Generalized Quasispecies Model on Finite Metric Spaces: Isometry Groups and Spectral Properties of Evolutionary Matrices
نویسندگان
چکیده
The quasispecies model introduced by Eigen in 1971 has close connections with the isometry group of the space of binary sequences relative to the Hamming distance metric. Generalizing this observation we introduce an abstract quasispecies model on a finite metric space X together with a group of isometries Γ acting transitively on X . We show that if the domain of the fitness function has a natural decomposition into the union of t G-orbits, G being a subgroup of Γ, then the dominant eigenvalue of the evolutionary matrix satisfies an algebraic equation of degree at most t ·rkZR, where R is what we call the orbital ring. The general theory is illustrated by two examples, in both of which X is taken to be the metric space of vertices of a regular polytope with the “edge” metric; namely, the case of a regular m-gon and of a hyperoctahedron are considered.
منابع مشابه
Joint and Generalized Spectral Radius of Upper Triangular Matrices with Entries in a Unital Banach Algebra
In this paper, we discuss some properties of joint spectral {radius(jsr)} and generalized spectral radius(gsr) for a finite set of upper triangular matrices with entries in a Banach algebra and represent relation between geometric and joint/generalized spectral radius. Some of these are in scalar matrices, but some are different. For example for a bounded set of scalar matrices,$Sigma$, $r_*...
متن کاملOn Eigen's Quasispecies Model, Two-Valued Fitness Landscapes, and Isometry Groups Acting on Finite Metric Spaces.
A two-valued fitness landscape is introduced for the classical Eigen's quasispecies model. This fitness landscape can be considered as a direct generalization of the so-called single- or sharply peaked landscape. A general, non-permutation invariant quasispecies model is studied, and therefore the dimension of the problem is [Formula: see text], where N is the sequence length. It is shown that ...
متن کاملOn The Bicompletion of Intuitionistic Fuzzy Quasi-Metric Spaces
Based on previous results that study the completion of fuzzy metric spaces, we show that every intuitionistic fuzzy quasi-metric space, using the notion of fuzzy metric space in the sense of Kramosil and Michalek to obtain a generalization to the quasi-metric setting, has a bicompletion which is unique up to isometry.
متن کاملFixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications
In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the assumption of normality we establish common fixed point theorems for the generalized quasi-contractions with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$ in the set...
متن کاملOn Infinitesimal Conformal Transformations of the Tangent Bundles with the Generalized Metric
Let be an n-dimensional Riemannian manifold, and be its tangent bundle with the lift metric. Then every infinitesimal fiber-preserving conformal transformation induces an infinitesimal homothetic transformation on . Furthermore, the correspondence gives a homomorphism of the Lie algebra of infinitesimal fiber-preserving conformal transformations on onto the Lie algebra of infinitesimal ...
متن کامل